合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> α-環(huán)糊精對非離子表面活性劑和兩性離子表面活性劑混合體系的界面及自組裝性質(zhì)——結(jié)論
> 表面活性劑對氣體水合物界面張力的影響
> 兩種抗菌肽與生物膜之間的相互作用的比較——結(jié)果和討論、結(jié)論
> 表面張力對印刷的影響
> 葡萄酒的表面張力與酒本身的成分之間的相關(guān)性論文——摘要、簡介
> 微凝膠顆粒在氣液界面處吸附動力學及動態(tài)方程研究——摘要、簡介
> 微凝膠顆粒在氣液界面處吸附動力學及動態(tài)方程研究——結(jié)果與討論
> 當我使用表面活性劑破壞了水表面張力后,如何恢復其表面張力?
> 表面張力儀在水環(huán)境檢測方面的應用——實驗
> 兩相流問題的表面張力模型及算法研究
推薦新聞Info
-
> 石油磺酸鹽中有效組分的結(jié)構(gòu)與界面張力的關(guān)系
> 乙醇胺與勝坨油田坨28區(qū)塊原油5類活性組分模擬油的動態(tài)界面張力(二)
> 乙醇胺與勝坨油田坨28區(qū)塊原油5類活性組分模擬油的動態(tài)界面張力(一)
> ?全自動表面張力儀無法啟動、讀數(shù)不穩(wěn)定等常見故障及解決方法
> 混合型烷醇酰胺復雜組成對油/水界面張力的影響規(guī)律(二)
> 混合型烷醇酰胺復雜組成對油/水界面張力的影響規(guī)律(一)
> 懸滴法測量液體表面張力系數(shù)的測量裝置結(jié)構(gòu)組成
> 多晶硅蝕刻液的制備方法及表面張力測試結(jié)果
> 高溫多元合金表面張力的計算方法及裝置、設(shè)備
> 納米生物質(zhì)體系性能評價及驅(qū)油特性實驗研究
香豆素和磷脂混合物單分子層膜中的分子相互作用的界面性質(zhì)——結(jié)果和討論
來源:上海謂載 瀏覽 1264 次 發(fā)布時間:2021-11-01
三、結(jié)果與討論
3.1. 壓縮等溫線
純和混合單層的 pA 等溫線與分子面積的關(guān)系如圖 1 所示。CMR/DPPG 等溫線顯示出與純 DPPG 脂質(zhì)相似的趨勢(圖 1a)。 相似相 對所有 CMR/DPPG 混合物都觀察到了轉(zhuǎn)變。 DPPG 和 DPPC 顯示崩潰壓力 (DPcoll) 為 52 mN.m-1 次方和 60 mN.m-1次方 , 分別。 一個過渡 (p ffi 3 mN.m-1次方 ) 從液體 發(fā)現(xiàn)純 DPPE 單層膨脹為凝聚相 與 D. coll 在 ffi55 mN.m-1次方 . 為 D. coll 獲得的值 純脂質(zhì)與文獻一致(Vollhardt 等人, 2000; 諾沃塔斯卡等人,2014 年)。
圖 1 混合單層 CMR/DPPG (a)、CMR/DPPE (b) 和 (c) 的 pA 等溫線 不同濃度的 CMR/DPPC。
DPcoll 強烈依賴于混合的組成 單層并與 CMR 摩爾比成比例地減少。 從圖 1a 和 b 中提供的數(shù)據(jù)可以看出,在 由于加入了 CMR,xCMR = 0.87(DPPG)和 0.75(DPPE) 在這些單層上形成更有組織的狀態(tài)(Takao 等人,1995 年)。
考慮到自研究脂質(zhì)以來極性區(qū)域的差異,評估等溫線的界面行為 具有相同的疏水部分。 DPPE 和 DPPC 是兩性離子脂質(zhì)(圖 2)。 DPPG由陰離子極性頭組成 (圖2)。 極性基團影響兩者之間的混溶性 研究的分子導致不同的分子排列 (Bouffioux 等人,2007 年)和脂質(zhì)包裝(Hazell 等人,2016 年)。 作為 正如預期的那樣,DPPG 和 DPPC 混合膜導致膨脹的單層(圖 1a 和 c)。 潘等人。 (2012) 證明 DPPG 頭部基團區(qū)域比磷脂酰膽堿對應物大 由于相互排斥的靜電相互作用 帶電 PG 頭組。 DPPC 疏水部分保持更遠的距離,最大限度地減少橫向內(nèi)聚相互作用(Myers, 1999)。 相反,DPPE 混合膜會產(chǎn)生固相單層(圖 1b)。
圖 2. 磷脂和香豆素分子結(jié)構(gòu)。 DPPC 和 DPPC 具有圓柱形分子形狀,而 DPPE 具有錐形幾何形狀。
3.2. 表面電位測量
作為函數(shù)分子面積 (ΔVA) 的表面電位為 如圖3a所示。 為所有研究的磷脂獲得的 ?V 值 與之前的報告相似(Andrade et al., 2006; Nowotarska 等,2014)。 ?V(460 mV 至 275 mV)逐漸降低 對于 DPPG,觀察到 CMR 摩爾分數(shù)的函數(shù)。 ?V 易受極性和非極性基團的取向影響。
DPPE 和 DPPC 的 ?V 作為函數(shù)的線性相關(guān)性 CMR 濃度的變化分別在圖 3b 和 c 中觀察到。 一種 對于高 CMR 濃度,ΔV 降低。 此外,DPPE [DPPC] 浮動單層導致 ?V ~ 604 [605] mV 對于 XCMR = 0.87 約為 334 [351] mV。 表面電位的降低可以通過 CMR 和兩性離子脂質(zhì)分子之間發(fā)生的氫鍵來解釋,即 CMR 之間 (C=O) 作為氫受體基團和質(zhì)子化脂質(zhì) 頭部基團(例如在 DPPE 分子中發(fā)現(xiàn)的 NH3+)(Boggs, 1987)。 DPPG 具有形成氫鍵的能力 鄰近磷脂酰甘油脂質(zhì)的甘油部分和磷酸氧(Zaraiskaya 和 Jeffrey,2005)。 DPPE 可以 形成分子間和分子內(nèi)氫鍵。 強烈的分子間相互作用導致液晶相變溫度升高,影響穩(wěn)定性 和膜滲透性(Leekumjorn 和 Sum,2006 年)。 這 DPPE 的胺基(氫供體)可以強烈相互作用 與磷酸鹽/羰基或水(氫受體)。 此外,膽堿顯示出疏水性水合作用 在 CH3 基團周圍,對于胺發(fā)生競爭 與頭基中的水和氧原子形成氫鍵 (Leekumjorn 和 Sum,2006 年)。
圖 3 CMR/DPPG (a)、CMR/DPPE (b) 和 CMR/DPPC (c) 的 DV-A 濃度。
圖 4. p = 20mN/m 時純磷脂單層的表觀偶極矩。
CMR 與單層尾部相互作用,因為它具有親脂性 辛醇-水分配系數(shù)(log Pow)為 = 2.54(拉布蒂,2012 年)。 分子與磷脂尾部的結(jié)合 導致表觀偶極矩的變化(Hidalgo 等人, 2004)。 視在偶極矩由以下定義 公式:
其中 ?V 是表面電位,l 是表觀偶極矩, A 是每個分子的面積,e0 是真空介電常數(shù),W 是 雙層貢獻。 雙層貢獻是 根據(jù)安德拉德等人計算。 (2005)。
從方程獲得的數(shù)據(jù)。 1 我們可以觀察到 混合視在垂直偶極矩的關(guān)系 (l) 對純磷脂單層的垂直矩 (l0) 根據(jù)單層壓縮變化 (Geraldo 等人,2013 年)(圖 4)。 考慮到 p = 20mN/m 處的分子面積(最高 DPcoll 為 純 CMR 膠片)。 本征分子偶極子的取向 (l) 形成薄膜的分子和亞相中水分子的組織結(jié)構(gòu)已知起著根本作用。 值得注意的是,l 被認為是偶極子的矢量和 由水合極性基團和烴類產(chǎn)生的矩 鏈(l = lpolar + lhydrocarbon 鏈)。 此外,DPPG、DPPC 和 DPPE 具有類似的疏水尾。 因此,有理由 假設(shè)非極性基團對整體 ?V 的貢獻為 相同。 ΔVA 曲線輪廓的差異是由于它們的 不同的 lpolar 貢獻。
3.3. 熱力學分析
熱力學分析是基于平均值進行的 分子面積 (mma)、過剩面積 (DAE)、過剩吉布斯自由能 (?Ge) 和過量的吉布斯混合自由能 (?Gmix) 在 p = 5, 10, 15 和 20 mN/m。 mma 的線性偏差表明組分根據(jù)可加性規(guī)則的混溶性 (Szczes 等人,2012 年)(圖 3)。 DAE 可以計算為
其中 A1,2 是 mma,Aid 是理想的混合單層,X1 和 X2 分別是組分 1 和 2 的摩爾分數(shù)。 A1 和 A2 是相同表面壓力下每分子純單分子層的相應面積。 DAE 值變?yōu)榱?當物質(zhì)形成理想混合物或不混溶時 (瓊斯和查普曼,1996 年)。
分子面積作為 CMR/ DPPG如圖5a所示。 可以看出負偏差 mma (XCMR = 0.33–0.67) 由于分子吸引力相互作用的增加。 CMR/DPPG 薄膜被認為是部分混溶和非理想的浮動單層,因為線性度不高 觀察到的。 CMR/DPPE 混合薄膜的結(jié)果在 XCMR=0.25 和 0.67 時表現(xiàn)出不同的斷裂點(圖 5b)。 DAE 節(jié)目 包裝效率甚至幾何形狀的改進 調(diào)節(jié)發(fā)生在較低的 XCMR(圖 6)(Andrade 等人, 2006; 周和張,2000)。
圖 5. 每個分子的平均面積與香豆素中香豆素摩爾分數(shù)的函數(shù)關(guān)系 固定表面壓力下的混合單層:CMR/DPPG (a)、CMR/DPPE (b) 和 不同濃度下的 CMR/DPPC (c)(實線:實際平均分子面積; 虛線:理想的平均分子面積)。
圖 6 CMR/DPPG (a)、CMR/DPPE 混合單層分子面積過大 (b) 和不同濃度的 CMR/DPPC (c)。
觀察到 CMR/DPPC 與 DAE 的正偏差 由于更不混溶的行為而導致的混合膜(圖 5c 和 6c)。 偏差程度取決于表面 壓力,因為在更高的壓力下,分子變得更多 包裝中分子間相互作用的影響變得不那么明顯(Chou 和 Chang,2000)。 令人厭惡的 行為表明相分離有利于分子聚集(Mishra 等,2012)。 得到了類似的結(jié)果 其他香豆素(Sarpietro 等人,2011 年;Chakraborty 等人,2012 年)。
為了分析熱力學特性,我們計算了 ΔGe 和 ΔGmix(Baldyga 和 Dluhy,1998;DynarowiczLatka 等,2001;Maget-Dana,1999)如下:
其中 DGid 是混合吉布斯自由能的理想變化 由
其中 K 代表玻爾茲曼常數(shù),T 是絕對值 溫度。 ?Ge 代表過量的吉布斯自由能或分子間相互作用的貢獻 混合物。 如果 ?Ge 為負值,則組分之間現(xiàn)有的分子相互作用為吸引型,而為正值 變異意味著一種排斥行為。 ?Ge 由以下公式定義:
CMR/DPPG 混合膜的 ?Ge 和 ?Gmix 表示負 從 XCMR ≥ 0.25 到 XCMR = 1.0 的偏差(圖 7a 和 8a)。 ?Ge 和 ?Gmix 負值表明 CMR/DPPE 單層是 熱力學穩(wěn)定(圖 7b)。 ?Ge 和 ?Gmix 值為 DPPC 混合單層陽性,表明不混溶 (圖 7c 和 8c)。 分子之間的距離取決于 在導致排斥的磷脂頭部基團上 互動(邁爾斯,1999 年;博格斯,1987 年)。
圖 7 CMR/DPPG (a)、CMR/DPPE (b) 和 CMR/DPPC (c) 在不同條件下的 DGe 濃度。
圖 8 CMR/DPPG (a)、CMR/DPPE (b) 和 CMR/DPPC (c) 的 DGmix 濃度。
3.4. 原子力顯微鏡分析
圖 9 顯示了純磷脂單層的 AFM 圖像 在 p = 20 mN/m 時轉(zhuǎn)移。 純磷脂顯示出均勻的 均方根 (rms) 等于 0.219 nm 的圖案, DPPG、DPPE 和 DPPC 分別為 0.060 nm 和 0.054 nm (圖 9)。 我們獲得了 rms ~ 0.045 nm (XCMR = 0.87) 相當于 光滑的單層形貌(圖 10a)。 另一方面, CMR/DPPE 和 CMR/DPPC 薄膜對應于粗糙表面 rms 分別為 0.1754 nm 和 0.072 nm(圖 10b 和 c)。 測量重復三次,rms 的標準偏差約為 5%。
圖 9. 純 DPPG (a)、DPPE (b) 和 DPPC 的地形圖像。
圖 10. 混合單層的地形圖像:CMR/DPPG (a)、CMR/DPPE (b) 和 CMR/DPPC (c)。 香豆素的摩爾分數(shù)相當于0.87。
香豆素和磷脂混合物單分子層膜中的分子相互作用的界面性質(zhì)——摘要、簡介
香豆素和磷脂混合物單分子層膜中的分子相互作用的界面性質(zhì)——材料和方法