狠狠的干性视频,欧美顶级metart裸体全部自慰,乱子伦一区二区三区,十四以下岁毛片带血a级

芬蘭Kibron專注表面張力儀測量技術(shù),快速精準測量動靜態(tài)表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯(lián)合大學.jpg

聯(lián)合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

合成脂質(zhì)體類姜黃素納米粒子的自組裝——結(jié)論、致謝!

來源:上海謂載 瀏覽 1149 次 發(fā)布時間:2021-11-18

四、結(jié)論


核-殼納米顆粒(或粘土結(jié)構(gòu))的穩(wěn)定自組裝形成,姜黃素位于核中,納米粘土位于電暈中。粒子的典型尺寸為150 nm,表面帶負電(zeta電位~25 mV)。通過zeta電位(如圖3所示)、自組裝系統(tǒng)的能量(如圖5(B)和6(B)所示)、20天內(nèi)的恒定DLS計數(shù)率(如ESI?中的圖S3所示),確認顆粒(由0.05%納米粘土形成)的穩(wěn)定性,以及20天后拍攝的SEM圖像的類似粒度分布(如ESI?中的圖S4所示)。組裝證明了疏水(核)和親水(殼)粒子與軟可調(diào)界面區(qū)共存。自組裝的主要原因是姜黃素納米顆粒之間的主要吸引力和納米粘土片提供的排斥力之間的復雜平衡。疏水區(qū)和親水區(qū)之間的界面區(qū)域在形成和穩(wěn)定過程中起著關(guān)鍵作用。它充分平衡了排斥屏障與姜黃素納米顆粒中普遍存在的疏水吸引力(如圖5(A)和6(A)所示),這阻止了姜黃素納米顆粒的聚集并導致粘粒組裝的形成。一些粘土顆粒的自組裝被發(fā)現(xiàn)對納米粘土團的大小很敏感,因為它調(diào)節(jié)了系統(tǒng)中的排斥力。對于這些結(jié)構(gòu)的穩(wěn)定形成,存在一個臨界閾值大小的納米粘土團簇(L<80nm和s<100nm)。隨著粘土顆粒自組裝電位的增大,一些粘土顆粒的自組裝電位降低。簡言之,我們最終證明,即使在沒有任何表面活性劑的情況下,當相互作用力被調(diào)整以引起微妙的平衡時,在無機粘土血小板存在的情況下也可以形成脂質(zhì)體樣結(jié)構(gòu)或穩(wěn)定的姜黃素納米粒。所形成的粘粒結(jié)構(gòu)在生物物理學領(lǐng)域可能有不同的應用。粘土小體組件預計對系統(tǒng)的pH值敏感,因此它可能適用于將裝載在堆芯中的貨物運送到目標位置。

圖6足跡直徑對粘粒組件的影響。(A) 作為界面區(qū)域厚度函數(shù)的能量變化(L?60 nm,T?298 K,f?0.5,姜黃素納米顆粒半徑R?50 nm,疏水衰減長度x0?1 nm,界面張力?40 mN m-1)。(B) 粘粒–粘粒相互作用作為粒間分離D的函數(shù),使用方程(5)計算。對于更大的封裝外形直徑,能量最小值變得更深,對于大于100 nm的s,能量最小值變得更有吸引力。


致謝


這項工作得到了尼赫魯大學授予NP的訪客獎學金的支持。NP和KR承認印度政府科學技術(shù)部的激勵教員獎。我們感謝Akanksha Sharma博士在該大學高級研究儀器設備的SEM測量方面提供的幫助。NP感謝Matthias Weiss教授的實驗室設施和有用的討論。


參考


1 Y. Gao, C. Berciu, Y. Kuang, J. Shi, D. Nicastro and B. Xu, ACS Nano, 2013, 7, 9055–9063.


2 G. Helgesen, E. Svasand and A. T. Skjeltorp, J. Phys.: Condens. Matter, 2008, 20, 204127, DOI: 10.1088/0953-8984/20/20/ 204127.


3 M. Grzelczak, J. Vermant, E. M. Furst and L. M. Liz-Mirzan, ACS Nano, 2010, 4, 3591–3605.


4 A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell and V. M. Rotello, Nature, 2000, 404, 746–748.


5 Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer and N. A. Kotov, Nat. Nanotechnol., 2011, 6, 580–587.


6 G. M. Whitesides and B. Grzybowski, Science, 2002, 295, 2418.


7 E. E. Meyer, K. J. Rosenberg and J. Israelachvili, PNAS, 2006, 103, 15739–15746.


8 N. I. Lebovka, Adv. Polym. Sci., 2014, 255, 57–96.


9 A. S. Iglesias, M. Grzelczak, T. Altantzis, B. Goris, J. PerezJuste, S. Bals, G. V. Tendeloo, G. V. Stephan, H. Donaldson Jr, B. F. Chmelka, J. N. Israelachvili and L. M. Liz-Marzan, ACS Nano, 2012, 12, 11059–11065.


10 A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset and H. Fessi, J. Colloid Sci. Biotechnol., 2012, 1, 147–168.


11 T. M. Allena and P. R. Cullis, Adv. Drug Delivery Rev., 2013, 65, 36–48.


12 M. J. Ostro and P. R. Cullis, Am. J. Hosp. Pharm., 1989, 46, 1576–1587.


13 A. Samad, Y. Sultana and M. Aqil, Curr. Drug Delivery, 2007, 4, 297–305.


14 P. da Silva Malheiros, D. J. Daroit and A. Brandelli, Trends Food Sci. Technol., 2010, 21, 284–292.


15 Z. Nie, A. Petukhova and E. Kumacheva, Nat. Nanotechnol., 2010, 5, 15–25.


16 E. Busseron, Y. Ruff, E. Moulin and N. Giuseppone, Nanoscale, 2013, 5, 7098–7140.


17 M. Rad-Malekshahi, L. Lempsink, M. Amidi, W. E. Hennink and E. Mastrobattista, Bioconjugate Chem., 2016, 27, 3–18.


18 R. M. Gorgoll, T. Tsubota, K. Harano and E. Nakamura, J. Am. Chem. Soc., 2015, 137, 7568–7571.


19 W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl and E. G′orecka, Nat. Commun., 2015, DOI: 10.1038/ ncomms7590.


20 M. M. Yallapu, M. Jaggi and S. C. Chauhan, Curr. Pharm. Des., 2013, 19, 1994–2010.


21 Y. Manolova, V. Deneva, L. Antonov, E. Drakalska, D. Momekova and N. Lambov, Spectrochim. Acta, Part A, 2014, 132, 815–820.


22 P. Anand, A. B. Kunnumakkara, R. A. Newman and B. B. Aggarwal, Mol. Pharm., 2007, 4, 807.


23 H. Hatcher, R. Planalp, J. Cho, F. M. Torti and S. V. Torti, Cell. Mol. Life Sci., 2008, 65, 1631.


24 Y. Zhang, C. Yang, W. Wang, J. Liu, Q. Liu, F. Huang, L. Chu, H. Gao, C. Li, D. Kong, Q. Liu and J. Liu, Sci. Rep., 2016, 6, 1– 12.


25 X. Yang, Z. Li, N. Wang, L. Li, L. Song, T. He, L. Sun, Z. Wang, Q. Wu, N. Luo, C. Yi and C. Gong, Sci. Rep., 2015, 5, 1–15.


26 D. Wang, S. M. Veena, K. Stevenson, C. Tang, B. Ho, J. D. Suh, V. M. Duarte, K. F. Faull, K. Mehta, E. S. Srivastan and M. B. Wang, Clin. Cancer Res., 2008, 14, 6228–6236.


27 V. Gupta, A. Aseh, C. N. Rios, B. B. Aggarwal and A. B. Mathur, Int. J. Nanomed., 2009, 4, 115–122.


28 R. K. Das, N. Kasoju and U. Bora, Nanomedicine, 2010, 6, 153– 160.


29 S. Bisht, G. Feldmann, S. Soni, R. Ravi, C. Karikar, A. Maitra and A. Maitra, J. Nanobiotechnol., 2007, 5, 3–21.


30 Y. He, Y. Huang and Y. Cheng, Cryst. Growth Des., 2010, 3, 1021–1024.


31 Bhawana, R. K. Basniwal, H. S. Buttar, V. K. Jain and N. Jain, J. Agric. Food Chem., 2011, 59, 2056–2061.


32 N. Pawar and H. B. Bohidar, Colloids Surf., A, 2009, 333, 120– 125.


33 B. Ruzicka, E. Zaccarelli, L. Zulian, R. Angelini, M. Sztucki, A. Moussaid, T. Narayanan and F. Sciortino, Nat. Mater., 2011, 10, 56–60.


34 R. K. Pujala, Dispersion Stability, Microstructure and Phase Transition of Anisotropic Nanodiscs, Springer Thesis, 2014, DOI: 10.1007/978-3-319-04555-9.


35 A. Faghihne jad and H. Zeng, Langmuir, 2013, 29, 12443– 12451.

合成脂質(zhì)體類姜黃素納米粒子的自組裝——摘要、介紹

合成脂質(zhì)體類姜黃素納米粒子的自組裝——材料和方法

合成脂質(zhì)體類姜黃素納米粒子的自組裝——結(jié)果和討論

合成脂質(zhì)體類姜黃素納米粒子的自組裝——結(jié)論、致謝!

国产A级理论片无码老男人| 久久久久久综合网天天| 国产永久免费高清在线观看| 18亚洲AV无码成人国产| 国产真实露脸多P视频播放| 2020国产情侣在线视频播放| 最新中文字幕AV专区| 亚洲欧美日韩综合久久| 1000又爽又黄禁片45分钟| 亚洲国产精品va在线播放| 久久精品国产蜜桃AV麻豆| 少妇高潮水多太爽了动态图| 女人被弄到高潮叫床免| 亚洲成A人片在线观看高清| 午夜免费国产体验区免费的| 欧美超大胆裸体xx视频| 欧美性大战XXXXX久久久| 免费看欧美全黄成人片| 国产精品久久久久久无毒不卡| 国产美女裸身网站免费观看视频| 亚洲AV永久无码制服河南实里| 成人午夜福利视频| 国产真实老熟女无套内射| 岳的下面又大又黑又肥| 丰满人妻熟妇乱又伦精品软件| 久久久久精品无码一区二区三区| 久久成人免费精品网站| 真实国产乱人伦在线视频播放| 日产精品卡三卡在线| 又爽又高潮的bb视频免费看| 在线无码免费网站永久| 蜜桃久久久久久精品免费观看| 在线播放免费人成视频在线观看| GOGO大胆午夜人体视频网| av人摸人人人澡人人超碰妓女| 欧美黑人猛男爽爽爽A片| 国产欧美日韩一区二区加勒比| 人妻 日韩精品 中文字幕| 青草青在线视频在线观看| 久久精品第九区免费观看| 欧美牲交videossexeso欧美|