新聞中心Info
合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> 5種聚萜烯馬來酸酐聚乙二醇酯高分子表面活性劑表面張力、乳化性能等研究(二)
> 5種聚萜烯馬來酸酐聚乙二醇酯高分子表面活性劑表面張力、乳化性能等研究(一)
> 馬來酰蓖麻油酸聚乙二醇酯的表面張力、等物化性能測定(二)
> 馬來酰蓖麻油酸聚乙二醇酯的表面張力、等物化性能測定(一)
> 石油磺酸鹽中有效組分的結構與界面張力的關系
> 乙醇胺與勝坨油田坨28區(qū)塊原油5類活性組分模擬油的動態(tài)界面張力(二)
> 乙醇胺與勝坨油田坨28區(qū)塊原油5類活性組分模擬油的動態(tài)界面張力(一)
> ?全自動表面張力儀無法啟動、讀數不穩(wěn)定等常見故障及解決方法
> 混合型烷醇酰胺復雜組成對油/水界面張力的影響規(guī)律(二)
> 混合型烷醇酰胺復雜組成對油/水界面張力的影響規(guī)律(一)
海洋細菌中生物表面活性物質——結論、致謝!
來源:上海謂載 瀏覽 1133 次 發(fā)布時間:2021-10-19
結論
在本研究中,從被石油烴污染的海洋環(huán)境中獲得了 18 株耐寒且能夠產生生物 SAC 的分離株。 分離物是假單胞菌屬、假交替單胞菌屬、紅球菌屬、鏈球菌屬、Cobetia、Glaciecola、Marinomonas、Serratia 和 Psychromonas 的成員。 其中,紅球菌屬。 LF-13 和紅球菌屬。 在油性底物(如煤油、正十六烷或菜籽油)存在的情況下,LF-22 能夠顯著降低培養(yǎng)基的表面張力。 兩種菌株中的生物表面活性劑合成不一定與生長相關,這表明靜息細胞可用于從兩種紅球菌菌株中生產生物表面活性劑。 從紅球菌屬中提取的生物表面活性劑。 菌株 LF-22 能夠提高正十六烷在 13°C 的生物降解率。 應純化這些分離物中的生物表面活性劑,以進一步闡明其化學結構和特性,并研究其在溢油生物修復和其他行業(yè)中的應用。
披露聲明
作者沒有報告潛在的利益沖突。
資金
本文中描述的工作得到了挪威研究委員會和 ENI Norge [項目編號 195160] 的資助以及 MABIT 計劃 [項目編號 BS0052] 的資助。
參考
[1] Rodrigues L, Banat IM, Teixeira J, Oliveira R. Biosurfactants: potential applications in medicine. J Antimicrob Chemother. 2006;57:609–618.
[2] Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr Sci. 2008;94:736–747.
[3] Pattanathu KSM, Gakpe E. Production, characterization and applications of biosurfactants-review. Biotechnology. 2008;7:360–370.
[4] Paramaporn C, Phonnok S, Durand A, Marie E, Thanomsub BW. Bioproduction and anticancer activity of biosurfactant produced by the dematiaceous fungus Exophiala dermatitidis SK80. J Microbiol Biotechnol. 2010;20:1664–1671.
[5] Kosaric N. Biosurfactants and their application for soil bioremediation. Food Technol Biotechnol. 2001;39:295–304.
[6] Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005;133:183–198.
[7] Damasceno FRC, Freire DMG, Cammarota MC. Assessing a mixture of biosufactant and enzyme pools in the anaerobic biological treatment of wastewater with high-fat content. Environ Technol. 2014;35:2035–2045.
[8] Cheng KY, Zhao ZY,Wong JWC. Solubilization and desorption of PAHs in soil aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition. Environ Technol. 2004;25:1159–1165.
[9] Whyte LG, Slagman SJ, Pietrantonio F, Bourbonnière L, Koval SF, Lawrence JR, Inniss WE, Greer CW. Physiological adaptations involved in alkane assimilation at low temperatures by Rhodococcussp. strain Q15. Appl Environ Microbiol. 1999;65:2961–2968.
[10] Yakimov MM, Giuliano L, Bruni V, Scarf? S, Golyshin PN. Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol. 1999;22:249–259.
[11] Bushnell LD, Haas HF. The utilization of certain hydrocarbons by microorganisms. J Bacteriol. 1941;41:653–673.
[12] Chen CY, Baker SC, Darton RC. The application of a high throughput analysis method for screening of potential biosurfactants from natural sources. J Microbiol Methods. 2007;70:503–510.
[13] Walter V, Syldatk C, Hausmann R. Biosurfactants. New York: Springer; 2010. Chapter 1, Screening concepts for the isolation of biosurfactant producing microorganisms; p. 1–13.
[14] Batista S, Mounteer A, Amorim F, Tótolaa MR. Isolation and characterization of biosurfactant/bioemulsifier producing bacteria from petroleum contaminated sites. Bioresour Technol. 2006;97:868–875.
[15] Tadros T. Applied surfactants: principle and applications. Weinheim: Wiley VCH; 2005. Adsorption of surfactants at the air/liquid and liquid/liquid interface; p. 81–82.
[16] Kuyukina MS, Ivshina IB, Philip JC, Christofi N, Dunbar SAE, Ritchkova MI. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods. 2001;46:149–156.
[17] Zhang C. Fundamentals of environmental sampling and analysis. Hoboken, NJ: Wiley; 2007. Chapter 6, Common operations and wet chemical methods in environmental laboratories; p. 148–149.
[18] Olivera NL, Commendatore MG, Delgado O, Esteves JL. Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora. J Ind Microbiol Biotechnol. 2003;30:542–548.
[19] Willumsen PAE, Karlson U. Screening of bacteria, isolated from PAH-contaminated soils for production of biosurfactants and bioemulsifiers. Biodegradation. 1997;7:415–423.
[20] Sapute SK, Bhawsar BD, Dhakephalkar PK, Chopade BA. Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Marine Sci. 2008;37:243–250.
[21] Yakimov MM, Gentile G, Bruni V, Cappello S, D'Auria G, Golyshin PN, Giuliano L. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol. 2009;49:419–432.
[22] Gerdes B, Brinkmeyer R, Dieckmenn G, Helmke E. Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiology Ecology. 2005;53:129–139.
[23] Brakstad OG, Bonaunet K. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5°C) and bacterial communities associated with degradation. Biodegradation. 2006;7:71–82.
[24] Margesin R. Alpine microorganisms: useful tools for lowtemperature bioremediation. J Microbiol. 2007;45:281–285.
[25] Grossman M, Prince R, Garret R, Garrett K, Bare R, Lee K, Sergy G, Owens E, Guénette C. Microbial diversity in oiled and unoiled shoreline sediments in the Norwegian Arctic. In: Bell CR, Brylinsky M, Johnson-Green P, editors. The 8th international symposium on microbial ecology. Proceedings; 1998 Aug 9–14; Halifax, NS (Canada). [26] Deppe U, Richnow HH, Michaelis W, Antranikian G. Degradation of crude oil by an Arctic microbial consortium. Extremophiles. 2005;9:461–470.
[27] Brakstad OG, Nonstad I, Faksness LG, Brandvik PJ. Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol. 2008;55:540–552.
[28] R?berg S, ?sterhus JI, Landfald B. Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol. 2011;34:1455– 1465.
[29] Déziel E, Lépine F, Milot S, Villemur R. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3- hydroyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology. 2003;149:2005–2013. [30] Benincasa M, Abalos A, Oliveira I, Manresa A. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soap stock. Antonie van Leeuwenhoek. 2004;85:1–8.
[31] Neu TR, Haertner T, Poralla K. Surface active properties of viscosin: a peptidolipid antibiotic. Appl Microbiol Biotechnol. 1990;32:518–520.
[32] Pedras MSC, Ismail N, Quail JW, Boyetchko SM. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Photochemistry. 2003;62:1105–1114.
[33] Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol. 2004;51:97–113.
[34] Anu-Appaiah KA, Karanth NGK. Insecticide specific emulsi- fier production by hexachlorocyclohexane utilizing Pseudomonas tralucida Ptm strain. Biotechnol Lett. 1991;13:371–374.
[35] Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M. Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol. 2005;98:456–463.
[36] Uchida Y, Tsuchiya R, Chino M, Hirano J, Tabuchi T. Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agric Biol Chem. 1989;53:757–763.
[37] Lang S, Philp CJ. Surface active lipids in Rhodococci. Antonie van Leeuwenhoek. 1998;74:59–70. [38] Peng F, Liu Z, Wang L, Shao Z. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol. 2007;102:1603–1611.
[39] Rougeaux H, Quezennec J, Carlson RW, Kervarec N, Pichon R, Talaga P. Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deepsea hydrothermal vent. Carbohydr Res. 1999;315:273–285.
[40] Mancuso-Nichols C, Garon S, Bowman JP, Raguénès G, Guézennec J. Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol. 2004;96:1057–1066.
[41] Mancuso-Nichols C, Bowman JP, Guezennec J. Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea ice bacterium grown in batch culture. Appl Environ Microbiol. 2005;71:3519–3523.
[42] Gutiérrez T, Shimmield T, Haidon C. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. strain TG12. Appl Environ Microbiol. 2008;74:4867–4876.
[43] Matsuyama H, Hirabayashi T, Kasahara H, Minami H, Hoshino T, Yumoto I. Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol. 2006;56:2883–2886.
[44] Fiebig R, Schulze D, Chung JC, Lee ST. Biodegradation of biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation. 1997;8:67–75.
[45] Cameotra SS, Makkar RS. Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol. 1998;50:520–529.
[46] Kim JS, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V. Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol. 1990;13:257–266.
[47] Kitamoto D, Fuzishiro T, Yanagishita H, Nakane T, Nakahara T. Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida Antarctic. Biotechnol Lett. 1992;14:305–310.