合作客戶(hù)/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 利用光誘導(dǎo)凝聚體施加毛細(xì)力實(shí)現(xiàn)精準(zhǔn)定位,揭示染色質(zhì)的黏彈性異質(zhì)性
> LB膜制備方法與注意事項(xiàng)
> 兩親性納米凝膠ANGs的親水性與乳液穩(wěn)定性和相轉(zhuǎn)變行為之間的定量關(guān)系
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對(duì)比(二)
> 表面張力儀的測(cè)試范圍以及測(cè)值精度的意義
> 十二烷基硫酸鈉、水楊酸丁酯流動(dòng)驅(qū)動(dòng)自推進(jìn)界面張力和表面流速測(cè)量
> 為什么葡萄酒會(huì)從下部往杯子的上部走呢?
> 壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對(duì)CO2-正構(gòu)烷烴界面張力的影響——實(shí)驗(yàn)部分
> 水相PH、鹽濃度對(duì)380號(hào)燃料油油水界面張力的影響
> 新調(diào)和燃料添加劑表面張力下降,燃燒更充分
推薦新聞Info
-
> ?全自動(dòng)表面張力儀無(wú)法啟動(dòng)、讀數(shù)不穩(wěn)定等常見(jiàn)故障及解決方法
> 混合型烷醇酰胺復(fù)雜組成對(duì)油/水界面張力的影響規(guī)律(二)
> 混合型烷醇酰胺復(fù)雜組成對(duì)油/水界面張力的影響規(guī)律(一)
> 懸滴法測(cè)量液體表面張力系數(shù)的測(cè)量裝置結(jié)構(gòu)組成
> 多晶硅蝕刻液的制備方法及表面張力測(cè)試結(jié)果
> 高溫多元合金表面張力的計(jì)算方法及裝置、設(shè)備
> 納米生物質(zhì)體系性能評(píng)價(jià)及驅(qū)油特性實(shí)驗(yàn)研究
> 多相凝聚體系的界面張力計(jì)算方法及研究進(jìn)展
> 基于表面張力的開(kāi)放式微流體平臺(tái),利用微柱重建三維肺部細(xì)胞微環(huán)境
> 強(qiáng)紫外線(xiàn)輻射對(duì)減縮劑抑制水泥石干縮變形效果研究(四)
生物表面活性劑產(chǎn)生菌菌體密度、細(xì)胞疏水性與發(fā)酵液pH及表面張力的關(guān)系(二)
來(lái)源:大連工業(yè)大學(xué)學(xué)報(bào) 瀏覽 285 次 發(fā)布時(shí)間:2024-09-14
2結(jié)果與分析
2.1生物表面活性劑產(chǎn)生菌的篩選
經(jīng)富集分離共得到49株細(xì)菌,初步篩選出14株生長(zhǎng)較好的目的菌株接種于發(fā)酵培養(yǎng)基。在微生物采油過(guò)程中,表面活性劑和有機(jī)酸可以把原油從巖層中剝離下來(lái),提高原油流動(dòng)性。因此,以發(fā)酵過(guò)程中發(fā)酵液的pH和表面張力的降低為指標(biāo),對(duì)初篩得到的菌株進(jìn)行復(fù)篩,同時(shí)分析所產(chǎn)生物表面活性劑的類(lèi)型,結(jié)果見(jiàn)表1。
表1初篩菌株的發(fā)酵測(cè)定結(jié)果
由表1可知,菌株29#、30#、31#、37#、47#的發(fā)酵液的表面張力值及pH較低。選取該5株菌進(jìn)行分析,菌株29#、30#、31#發(fā)酵液的表面張力及pH比較接近,產(chǎn)生的生物表面活性劑均為糖脂,在原油平板上的菌落均為熒光綠色,種子液和發(fā)酵液均為熒光綠色,細(xì)胞均為桿狀且大小相同。因此,判斷該3株菌為同一菌種。復(fù)篩得到的菌株為31#、37#、47#。
2.2生物表面活性劑產(chǎn)生菌的生理生化特性
對(duì)篩選所得菌株進(jìn)行常規(guī)生理生化特性實(shí)驗(yàn),結(jié)果如表2所示。根據(jù)表2所示結(jié)果和《伯杰氏(Berge)菌種鑒定手冊(cè)》的描述,可鑒定菌株31#為假單孢屬,菌株37#、47#均為芽孢桿菌屬。
表2生物表面活性劑產(chǎn)生菌的生理生化特性
2.3生物表面活性劑產(chǎn)生菌的生長(zhǎng)特性
2.3.1菌株31#的生長(zhǎng)特性
菌株31#的生長(zhǎng)特性如圖1所示。在發(fā)酵前48 h,菌株31#細(xì)胞疏水性呈上升趨勢(shì),菌體密度逐步增長(zhǎng),發(fā)酵液的表面張力下降。表明較強(qiáng)的細(xì)胞疏水性能增加菌體對(duì)疏水性有機(jī)物的吸附,從而增加菌體與有機(jī)物的接觸機(jī)會(huì),增強(qiáng)對(duì)有機(jī)物的利用能力,導(dǎo)致菌體大量生長(zhǎng)并產(chǎn)生大量的生物表面活性物質(zhì),使發(fā)酵液的表面張力大幅度下降,產(chǎn)生的生物表面活性物質(zhì)通過(guò)改變吸附界面的特性來(lái)調(diào)節(jié)細(xì)胞與界面之間的親和力,進(jìn)一步促進(jìn)微生物細(xì)胞對(duì)烴類(lèi)化合物的附著和烴類(lèi)化合物穿透細(xì)胞膜間隙。在發(fā)酵48~84 h期間,菌體生長(zhǎng)進(jìn)入衰亡期,細(xì)胞疏水性下降,發(fā)酵液的表面張力呈下降趨勢(shì),這是部分菌體自溶釋放出細(xì)胞內(nèi)的生物表面活性物質(zhì)的結(jié)果。在發(fā)酵84~108 h期間,細(xì)胞疏水性呈下降趨勢(shì),發(fā)酵液的表面張力隨菌體密度增大而增大,表明菌體攝取烴類(lèi)化合物能力降低,利用發(fā)酵液中積累的生物表面活性劑呈現(xiàn)二次生長(zhǎng)。在發(fā)酵108~120 h期間,細(xì)胞疏水性上升,表面張力下降。由于31#為革蘭氏陰性菌,細(xì)胞外壁中存在與其疏水性密切相關(guān)的脂多糖,發(fā)酵液中大量積累的生物表面活性劑導(dǎo)致細(xì)胞壁中脂多糖大量流失,從而引起細(xì)胞疏水性增大。
圖1菌株31#的好氧培養(yǎng)過(guò)程曲線(xiàn)
2.3.2菌株37#的生長(zhǎng)特性
菌株37#的生長(zhǎng)特性如圖2所示。在發(fā)酵過(guò)程中,細(xì)胞疏水性總體呈上升趨勢(shì)。發(fā)酵24 h時(shí),細(xì)胞疏水性大于1,菌體密度隨細(xì)胞疏水性的增大而增大。發(fā)酵36 h時(shí),發(fā)酵液的表面張力降低,這是因?yàn)闊N類(lèi)的難溶性使得微生物在攝取烴類(lèi)生長(zhǎng)過(guò)程中往往伴隨著生物表面活性劑的生成,其主要作用是使烴類(lèi)在水溶液中有效擴(kuò)散,并滲入細(xì)胞內(nèi)部被同化分解,菌體能夠更好地利用烴類(lèi)碳源生長(zhǎng),菌體密度上升。在發(fā)酵48~84 h期間,菌體生長(zhǎng)進(jìn)入穩(wěn)定期,菌體密度保持不變。在發(fā)酵84~96 h期間,菌體密度上升,細(xì)胞出現(xiàn)二次生長(zhǎng)。這是由于液體石蠟是一種混合物,菌體首先攝取較易利用的10個(gè)碳以上的長(zhǎng)鏈烷烴,然后再利用其他鏈長(zhǎng)的烷烴進(jìn)行生長(zhǎng),同時(shí)因?yàn)榧?xì)胞疏水性上升,細(xì)胞利用液體石蠟的能力增強(qiáng),從而產(chǎn)生大量的生物表面活性物質(zhì),使發(fā)酵液的表面張力下降。在發(fā)酵96~120 h期間,細(xì)胞疏水性的降低,菌體密度降低,菌體生長(zhǎng)進(jìn)入衰亡期,發(fā)酵液的表面張力上升。
圖2菌株37#的好氧培養(yǎng)過(guò)程曲線(xiàn)
2.3.3菌株47#的生長(zhǎng)特性
菌株47#的生長(zhǎng)特性如圖3所示。在發(fā)酵前48 h,菌體密度顯著增長(zhǎng),細(xì)胞疏水性增大,發(fā)酵液的表面張力降低。在發(fā)酵60~72 h期間,菌體密度減小,細(xì)胞疏水性降低,發(fā)酵液表面張力降低,菌體生長(zhǎng)進(jìn)入衰亡期。在發(fā)酵72~84 h期間,菌體密度增加,細(xì)胞出現(xiàn)二次生長(zhǎng),產(chǎn)生大量的生物表面活性物質(zhì),使發(fā)酵液的表面張力大幅下降。在發(fā)酵84~120 h期間,菌體密度降低,發(fā)酵液的表面張力在保持一段時(shí)間的基本穩(wěn)定后升高。表明菌體在利用烴類(lèi)生長(zhǎng)過(guò)程中,產(chǎn)生了生物表面活性劑。生物表面活性劑的產(chǎn)生降低了油水界面張力,使烷烴得以有效擴(kuò)散,增大油水界面面積,從而便于細(xì)胞與較大油滴之間的直接接觸,同時(shí)使細(xì)胞的疏水性變大,導(dǎo)致細(xì)胞親油,從而有利于菌對(duì)烴類(lèi)的利用。
圖3菌株47#的好氧培養(yǎng)過(guò)程曲線(xiàn)
2.4生物表面活性劑的化學(xué)組分分析
將菌株31#、37#和47#于30℃培養(yǎng)后,對(duì)發(fā)酵液萃取所得生物表面活性劑粗制品進(jìn)行硅膠薄層層析,結(jié)果如圖4所示。將萃取所得生物表面活性劑粗制品進(jìn)行酸解,硅膠薄層層析結(jié)果如圖5所示。
圖4的層析結(jié)果顯棕色,說(shuō)明菌株31#、37#和47#所產(chǎn)的生物表面活性劑均為糖脂。由圖5可知,菌株31#、37#和47#所產(chǎn)的生物表面活性劑經(jīng)酸解后顯棕色斑點(diǎn),且Rf值與鼠李糖的Rf值相同,說(shuō)明菌株31#、37#和47#所產(chǎn)的生物表面活性劑的糖基均為鼠李糖。
圖4生物表面活性劑粗品的TLC圖譜
圖5生物表面活性劑酸解后的TLC圖譜
3結(jié)論
通過(guò)對(duì)發(fā)酵液表面張力及pH的測(cè)定,篩選出3株生物表面活性劑產(chǎn)生菌,且所產(chǎn)的生物表面活性劑均為鼠李糖脂;經(jīng)生理生化鑒定,菌株31#為假單胞菌屬,菌株37#、47#為芽孢桿菌屬;通過(guò)對(duì)所篩菌株的生長(zhǎng)特性的研究,說(shuō)明菌體密度、細(xì)胞疏水性、發(fā)酵液的pH及表面張力之間密切相關(guān),相互制約。在以液體石蠟為唯一碳源培養(yǎng)時(shí),菌株31#的發(fā)酵液表面張力下降最多,且表現(xiàn)出的細(xì)胞疏水性最強(qiáng),發(fā)酵液表面張力下降到49.47 mN/m,細(xì)胞疏水性為3.09%。較強(qiáng)的細(xì)胞疏水性有利于菌體對(duì)疏水性基質(zhì)的利用,從而導(dǎo)致菌體密度的增長(zhǎng)及發(fā)酵液表面張力的下降,這對(duì)微生物開(kāi)采稠油十分有利。