合作客戶(hù)/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 熱力學(xué)模型計(jì)算MgO-B2O3-SiO2-CaOAl2O3富硼渣表面張力(三)
> 表面張力為35.5 mN m?1可提高水凝膠涂層仿生水下非粘著超疏油性能
> 溫度和鹽離子對(duì)表面活性劑溶液與原油之間界面張力的影響規(guī)律研究
> LB膜分析儀的應(yīng)用
> 高性能氟碳防水鎖劑(FS-1)對(duì)鹽水溶液表面張力的影響
> 無(wú)機(jī)粒子對(duì)TPAE界面張力、發(fā)泡、抗收縮行為的影響(二)
> 轉(zhuǎn)移式微量點(diǎn)膠的基本原理及膠滴的轉(zhuǎn)移率、鋪展直徑
> 生活中存在的一些表面張力現(xiàn)象
> 石油磺酸鹽、聚丙烯酰胺濃度對(duì)界面張力的影響
> 低分子熱塑性樹(shù)脂體系CBT500/DBTL的界面張力與溫度的關(guān)聯(lián)性(二)
推薦新聞Info
-
> ?全自動(dòng)表面張力儀無(wú)法啟動(dòng)、讀數(shù)不穩(wěn)定等常見(jiàn)故障及解決方法
> 混合型烷醇酰胺復(fù)雜組成對(duì)油/水界面張力的影響規(guī)律(二)
> 混合型烷醇酰胺復(fù)雜組成對(duì)油/水界面張力的影響規(guī)律(一)
> 懸滴法測(cè)量液體表面張力系數(shù)的測(cè)量裝置結(jié)構(gòu)組成
> 多晶硅蝕刻液的制備方法及表面張力測(cè)試結(jié)果
> 高溫多元合金表面張力的計(jì)算方法及裝置、設(shè)備
> 納米生物質(zhì)體系性能評(píng)價(jià)及驅(qū)油特性實(shí)驗(yàn)研究
> 多相凝聚體系的界面張力計(jì)算方法及研究進(jìn)展
> 基于表面張力的開(kāi)放式微流體平臺(tái),利用微柱重建三維肺部細(xì)胞微環(huán)境
> 強(qiáng)紫外線(xiàn)輻射對(duì)減縮劑抑制水泥石干縮變形效果研究(四)
溫度、鹽對(duì)辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為的影響(二)
來(lái)源:化工學(xué)報(bào) 瀏覽 100 次 發(fā)布時(shí)間:2024-11-07
2模擬結(jié)果與分析
2.1界面性能
為考察OPES的界面行為及性能進(jìn)行了8組對(duì)比模擬實(shí)驗(yàn),分別記作S20、S50、S80、S100、S120、S140、S160、S180,即通過(guò)改變表面活性劑的數(shù)量對(duì)比各個(gè)體系的各相密度、界面寬度、界面張力以及界面聚集形態(tài)等界面行為,得出OPES表面活性劑濃度對(duì)界面行為的影響以及變化趨勢(shì)等結(jié)論。
對(duì)比模擬實(shí)驗(yàn)均在由500個(gè)癸烷分子、5000個(gè)水分子構(gòu)成的油-水界面以及溫度為318 K的條件下進(jìn)行。所有體系在平衡后表面活性劑的親水基插入水相,親油基插入油相并且形成非常穩(wěn)定的界面。當(dāng)表面活性劑濃度不斷增加(從S20到S160)時(shí)由于單個(gè)表面活性劑分子的占有面積逐漸減少,分子的排列呈由分散變?yōu)榫o湊的趨勢(shì)。但當(dāng)表面活性劑數(shù)量增大到180時(shí),部分分子開(kāi)始脫離原來(lái)平面,此時(shí)表面活性劑濃度已達(dá)到飽和狀態(tài)。這一過(guò)程的界面張力變化如表1所示。
疏水尾鏈碳原子序參數(shù)(order parameter,SCD)可以用來(lái)表示疏水尾鏈的有序性
SCD可用式(1)來(lái)計(jì)算,θ代表Cn1-和Cn1+原子之間向量與界面垂直方向的角度。圖3所示為上述8個(gè)體系的序參數(shù)曲線(xiàn),對(duì)于每一條序參數(shù)曲線(xiàn)都隨著碳原子序號(hào)的增加序參數(shù)逐漸增大,這說(shuō)明了疏水鏈末端的碳原子有序性更強(qiáng)。從圖中還可以觀察到S20的曲線(xiàn)幾乎水平,這是由于OPES在界面的濃度過(guò)低其分子可以自由擺動(dòng)。當(dāng)表面活性劑的數(shù)量從20增加到180時(shí),SCD曲線(xiàn)不斷上升,這說(shuō)明隨著表面活性劑數(shù)量的增加疏水鏈排列的有序性也在不斷增強(qiáng)。并且S160和S180的序參數(shù)曲線(xiàn)相當(dāng)接近,這表明此時(shí)表面活性劑的濃度已經(jīng)達(dá)到界面的飽和濃度。
對(duì)于表面活性劑來(lái)說(shuō)降低界面張力的能力是考察其性能好壞的重要指標(biāo)之一,下面通過(guò)考察不同體系的界面張力和界面寬度來(lái)進(jìn)一步說(shuō)明OPES的界面性能,如表1所示。對(duì)于界面張力可以利用式(2)來(lái)計(jì)算,其中LZ為盒子高度;Pxx、Pyy、Pzz分別為x、y、z方向的壓力。
表1不同表面活性劑濃度下體系界面張力和界面寬度
從表1可以發(fā)現(xiàn)表面活性劑數(shù)量的增加使得界面張力逐漸下降。其中當(dāng)OPES數(shù)量由20增加到80時(shí),界面張力值較高,這說(shuō)明當(dāng)表面活性劑濃度較低時(shí)并不能起到很好的降低界面張力的作用;隨著表面活性劑數(shù)量進(jìn)一步增加界面張力逐漸下降,當(dāng)OPES數(shù)量為180時(shí),達(dá)到臨界飽和狀態(tài),此時(shí)界面張力僅為3.85 mN·m-1,此變化規(guī)律與真實(shí)實(shí)驗(yàn)規(guī)律相同。這同時(shí)也說(shuō)明辛基酚聚氧乙烯醚磺酸鹽可以很好地降低界面張力,是一種性能優(yōu)良的表面活性劑。界面寬度用體系密度圖中表面活性劑的密度曲線(xiàn)寬度來(lái)表示。隨著表面活性劑個(gè)數(shù)增加界面寬度遞增,起初界面寬度增加速度較快是因?yàn)榻缑鍻PES濃度過(guò)低并未飽和;當(dāng)OPES數(shù)量達(dá)到100~140時(shí),界面寬度僅有少量緩慢增加這是由于此時(shí)界面正在逐漸接近飽和狀態(tài)。隨著OPES的數(shù)量達(dá)到160和180時(shí),界面寬度增加幅度變大,進(jìn)一步驗(yàn)證此時(shí)界面已達(dá)到飽和狀態(tài)。
本文提取體系穩(wěn)定的S80、S120進(jìn)行分析,兩個(gè)體系的各部分密度圖如圖4所示。在平衡狀態(tài)下兩體系中水的平均密度分別為989.86 kg·m-3、992.43 kg·m-3,與國(guó)際溫標(biāo)318 K時(shí)水密度990.2 kg·m-3值接近;另外,兩體系中癸烷平均密度為711.49 kg·m-3、710.72 kg·m-3,與真實(shí)狀況下癸烷密度711.2 kg·m-3值接近,這表明模擬體系的模型選擇、力場(chǎng)參數(shù)都是準(zhǔn)確的,可以得出可靠結(jié)論。
在OPES結(jié)構(gòu)中,有兩個(gè)親水基團(tuán)分別為氧乙烯基(OG)、磺酸基(SDMSO),本文通過(guò)徑向分布函數(shù)(通常指的是給定某個(gè)粒子的坐標(biāo),其他粒子在空間的分布概率)來(lái)對(duì)比兩者與水之間的作用力。圖5為表面活性劑中氧乙烯基和磺酸基與水分子中氫原子的徑向分布函數(shù)、。由圖可知,(r)曲線(xiàn)第1個(gè)峰值出現(xiàn)在0.306處,這表明磺酸基中的氧原子與水g中的氫原子之間較強(qiáng)的氫鍵作用形成了第1水層;在距離為0.458時(shí),出現(xiàn)第2個(gè)峰值,數(shù)值有所下降,這表示逐漸減小的氫鍵作用形成了第2水層;第3水層形成在0.688處,此時(shí)磺酸基與水的作用進(jìn)一步減弱,但3處的峰值均遠(yuǎn)大于氧乙烯基的峰值。這表明磺酸基與水分子的作用力遠(yuǎn)高于氧乙烯基,所以磺酸基為辛基酚聚氧乙烯醚磺酸鹽結(jié)構(gòu)中的主要親水基團(tuán)。
圖4 S80、S120平衡狀態(tài)下各部分密度分布
圖5 S80中表面活性劑中親水基團(tuán)與水中氫原子之間的徑向分布函數(shù)
2.由于采油環(huán)境日益嚴(yán)苛,一些表面活性劑在高溫條件下與水之間的氫鍵易斷裂,使得其親水性能大幅降低,因此抗高溫性能是考察表面活性劑好壞的重要指標(biāo)之一。
本文選取4組對(duì)比模擬實(shí)驗(yàn),保持表面活性劑數(shù)量為80不變,控制溫度分別為318、343、358、373 K,記作S80T318、S80T343、S80T358、S80T373。
表2通過(guò)界面張力、表面活性劑與水的氫鍵數(shù)量、勢(shì)能3組數(shù)據(jù)對(duì)比得出表面活性劑的界面張力隨著溫度升高而降低的結(jié)論。數(shù)據(jù)表明在4組模擬實(shí)驗(yàn)過(guò)程中,界面的寬度并沒(méi)有發(fā)生改變。因此界面張力下降的主要原因是由于OPES勢(shì)能的降低導(dǎo)致分子之間的作用力也隨之降低。
2溫度對(duì)癸烷+水+OPES體系油-水界面張力的影響
另一個(gè)值得注意的改變是雖然隨著溫度的升高OPES與水之間的氫鍵有微量的下降但并沒(méi)有達(dá)到濁點(diǎn),況且磺酸基具有良好的親水性,因此,OPES并沒(méi)有因?yàn)闇囟壬叨В炊芴岣咂湓谟?水界面的性能。
表2不同溫度下各體系的界面性能
2.3鹽對(duì)癸烷+水+OPES體系油-水界面張力的影響
大量數(shù)據(jù)表明,在高鹽油藏表面活性劑的化學(xué)穩(wěn)定性易受到影響,其結(jié)構(gòu)可能受到改變或破壞進(jìn)而影響石油采收率。石油磺酸鹽、烷基苯磺酸鹽等表面活性劑在高鹽度的環(huán)境下極易失去活性。因此,表面活性劑是否具有良好的抗鹽性能顯得尤為重要。對(duì)于辛基酚聚氧乙烯醚磺酸鹽從結(jié)構(gòu)上來(lái)說(shuō)其具有的磺酸基結(jié)構(gòu)應(yīng)使其有良好的耐鹽性能。
本文選取5組對(duì)比模擬實(shí)驗(yàn),保持OPES數(shù)量為80、溫度為318 K不變,分別向體系內(nèi)加入1%、2%、3%、4%、5%的NaCl溶液,記作S80Na1、S80Na2、S80Na、S80Na4、S80Na5。圖6所示為S80Na2體系在平衡狀態(tài)下界面狀態(tài),其中藍(lán)色小球?yàn)镹a+。Na+幾乎全部分散于水相中,在表面活性劑附近的分布很少,因此可以初步確定鹽對(duì)表面活性劑的影響較小,辛基酚聚氧乙烯醚磺酸鹽具有抗鹽性。
為進(jìn)一步確定OPES的耐鹽性能,可以再通過(guò)不同體系平衡狀態(tài)時(shí)相應(yīng)的界面張力和氫鍵數(shù)量來(lái)討論,相關(guān)數(shù)據(jù)如表3所示。
表3不同濃度Na+溶液體系界面張力以及OPES與H2O的氫鍵數(shù)量
模擬數(shù)據(jù)顯示,隨著NaCl濃度的升高,表面活性劑在油水界面的界面張力僅有小幅升高,這是由于體系中不斷加入NaCl使得OPES更加親油,使得部分表面活性劑分子向油相中躍遷。另外,氫鍵數(shù)量有少量下降這是由于在體系不斷添加Na+、Cl-過(guò)程中,替換了水相中的水分子使得水分子數(shù)量減少?gòu)亩绊懥藲滏I數(shù)量。
圖7中顯示了在不同NaCl濃度的體系中,磺酸基中的氧原子與水中氫原子的徑向分布gOS-HW(r),可以看出其峰值并沒(méi)有因?yàn)镹aCl濃度的增加而發(fā)生很大改變,這更能說(shuō)明陽(yáng)離子并不能對(duì)表面活性劑的性能造成影響。
圖7在不同Na+濃度體系中磺酸基中的氧原子與水中氫原子的徑向分布函數(shù)
下面同樣通過(guò)疏水鏈碳原子序參數(shù)的變化來(lái)進(jìn)一步驗(yàn)證OPES的抗鹽性。從圖8中可以看出,在同一體系中隨著碳原子的增加序參數(shù)值增大,這說(shuō)明越接近疏水尾鏈的末端的碳原子有序性越好。同時(shí),對(duì)于NaCl濃度為1%、3%、4%、5%的體系,疏水尾鏈碳原子的序參數(shù)并未發(fā)生太大改變,NaCl濃度為2%時(shí)其序參數(shù)值還要大于1%時(shí)的序參數(shù)值,這說(shuō)明在濃度為2%的NaCl溶液中疏水鏈碳原子間的相互作用力最強(qiáng)。
提取2%NaCl濃度時(shí)體系的疏水尾鏈碳原子序參數(shù)與同濃度的CaCl2體系進(jìn)行對(duì)比,對(duì)比結(jié)果如圖9所示。在CaCl2溶液中疏水鏈碳原子的SCD值明顯高于無(wú)鹽溶液以及2%的NaCl溶液中的SCD值,因此,在Ca2+的環(huán)境下碳原子的擺動(dòng)空間與靈活性要小于在Na+的環(huán)境中。
圖8不同Na+濃度下疏水尾鏈碳原子序參數(shù)
圖9在不同離子溶液中疏水鏈碳原子的序參數(shù)
圖10中曲線(xiàn)分別代表在2%NaCl溶液、2%CaCl2溶液中磺酸基中的氧原子與水中氫原子之間的徑向分布函數(shù),如圖所示兩條曲線(xiàn)的峰值并未有太大差別,這說(shuō)明OPES對(duì)Na+、Ca2+都有很好的抗鹽性。
進(jìn)一步分析OPES對(duì)Na+、Ca2+抗鹽性的差別,考察了磺酸基中的氧原子與Na+、Ca2+的徑向分布函數(shù),如圖11所示。圖中兩曲線(xiàn)的峰值出現(xiàn)較大差距,其中Na+曲線(xiàn)的峰值明顯小于Ca2+曲線(xiàn)的峰值,這表明親水基團(tuán)與Na+的作用較小,也就是說(shuō)Na+對(duì)OPES的性質(zhì)影響較小。因此,辛基酚聚氧乙烯醚磺酸鹽的抗鹽性順序?yàn)镹a+>Ca2+,與對(duì)序參數(shù)所做的分析結(jié)論相同。
圖10在不同離子溶液中磺酸基中的氧原子與水中氫原子的徑向分布函數(shù)
圖11磺酸基中的氧原子與不同離子之間的徑向分布函數(shù)
3結(jié)論
(1)分子動(dòng)力學(xué)模擬可以準(zhǔn)確模擬辛基酚聚氧乙烯醚磺酸鹽在油-水界面的界面行為及性能。
(2)辛基酚聚氧乙烯醚磺酸鹽可以大幅降低油-水界面的界面張力。
(3)辛基酚聚氧乙烯醚磺酸鹽中磺酸基為其主要親水基團(tuán)且疏水鏈尾端碳原子有序性較好。
(4)辛基酚聚氧乙烯醚磺酸鹽在溫度為318~373 K時(shí)界面張力隨溫度升高而減小,具有良好的抗高溫性能。
(5)辛基酚聚氧乙烯醚磺酸鹽在Na+濃度為1%~5%的高鹽條件下性質(zhì)穩(wěn)定,界面張力僅有小幅增加,并且其對(duì)Na+的耐鹽性好于對(duì)Ca2+的耐鹽性。