合作客戶(hù)/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 怎么理解液體表面張力?
> 牛血清白蛋白對(duì)表面的影響離子液體型雙子表面活性劑的性質(zhì)——材料和方法
> 【干貨】墨水的物化性質(zhì)
> Delta-8臨界膠束濃度對(duì)于藥物在生物體內(nèi)的增溶性的重要性研究——結(jié)論、致謝!
> 中性墨水的研制機(jī)理及制造工藝
> 微流控芯片技術(shù)應(yīng)對(duì)臨床檢驗(yàn)醫(yī)學(xué)考驗(yàn)
> 為何界面張力儀測(cè)液體張力系數(shù)總是偏?。?/a>
> 墨水是如何生產(chǎn)的
> 和燒水相比為什么煮粥更容易溢出來(lái)
> 表面張力儀的測(cè)試原理
推薦新聞Info
-
> 石油磺酸鹽中有效組分的結(jié)構(gòu)與界面張力的關(guān)系
> 乙醇胺與勝坨油田坨28區(qū)塊原油5類(lèi)活性組分模擬油的動(dòng)態(tài)界面張力(二)
> 乙醇胺與勝坨油田坨28區(qū)塊原油5類(lèi)活性組分模擬油的動(dòng)態(tài)界面張力(一)
> ?全自動(dòng)表面張力儀無(wú)法啟動(dòng)、讀數(shù)不穩(wěn)定等常見(jiàn)故障及解決方法
> 混合型烷醇酰胺復(fù)雜組成對(duì)油/水界面張力的影響規(guī)律(二)
> 混合型烷醇酰胺復(fù)雜組成對(duì)油/水界面張力的影響規(guī)律(一)
> 懸滴法測(cè)量液體表面張力系數(shù)的測(cè)量裝置結(jié)構(gòu)組成
> 多晶硅蝕刻液的制備方法及表面張力測(cè)試結(jié)果
> 高溫多元合金表面張力的計(jì)算方法及裝置、設(shè)備
> 納米生物質(zhì)體系性能評(píng)價(jià)及驅(qū)油特性實(shí)驗(yàn)研究
牛血清白蛋白對(duì)表面的影響離子液體型雙子表面活性劑的性質(zhì)——結(jié)果和討論
來(lái)源:上海謂載 瀏覽 1513 次 發(fā)布時(shí)間:2021-11-24
3. 結(jié)果和討論
通過(guò)測(cè)定[C10-4-C10im]Br2在三種不同溫度下的表面張力(γ),研究了BSA對(duì)[C10-4-C10im]Br2表面性質(zhì)的影響。 測(cè)量在[C10-4-C10im]Br2濃度范圍0.56至6.57 mM內(nèi)進(jìn)行。 圖1顯示了在不同溫度下不存在和存在不同濃度BSA時(shí)[C10-4-C10im]Br2的表面張力與對(duì)數(shù)濃度的曲線圖。 如圖1所示,在所有情況下,隨著[C10-4-C10im]Br2濃度的增加,溶液的表面張力逐漸降低,直至達(dá)到一個(gè)平臺(tái)區(qū)域,在該平臺(tái)區(qū)域上方,幾乎獲得一個(gè)恒定值。 根據(jù)表面張力與對(duì)數(shù)濃度曲線的交點(diǎn)確定不同溫度下的CMC值,并在表1中列出。 從圖表中獲得的CMC值幾乎等于Ao等人獲得的值。[63]表面張力曲線顯示[C10-4-C10im]Br2的CMC隨著溫度以及BSA濃度的增加而增加(圖2)。 結(jié)果與文獻(xiàn)數(shù)據(jù)(Ao等人[63]和耿等人[65])一致。 一般認(rèn)為,離子型兩親分子的CMC首先在低溫下降低,然后在高溫下升高[66],而非離子表面活性劑的CMC則呈現(xiàn)相反的趨勢(shì)。[67]在某些情況下,離子型系統(tǒng)的CMC也會(huì)隨著溫度的升高而持續(xù)升高。[68,69]
圖1. 不同溫度下[C10-4-C10im]Br2的CMC隨BSA濃度的變化。
圖2. 在含有(a)0(b)5,(c)20和(d)50μM BSA的水溶液中,表面張力(γ)與log[C10-4-C10im]Br2的關(guān)系。
觀察到[C10-4-C10im]Br2的表面張力(γ)隨著溫度和BSA濃度的升高而降低。 [C10-4-C10im]Br2的這種行為是由于溫度升高破壞了表面活性劑的分子間氫鍵,從而增加了親水基團(tuán)的水合作用,從而降低了表面張力并延遲了膠束化過(guò)程[70], 溫度升高會(huì)改變疏水基團(tuán)周?chē)乃蠈?,從而通過(guò)減緩表面活性劑分子在空氣/水界面的膠束化來(lái)加速表面活性劑分子的吸附。[71]
隨著B(niǎo)SA濃度的增加,CMC值的增加是由于膠束化所需的[C10-4-C10im]Br2單體的數(shù)量減少,因?yàn)樗鼈兣cBSA形成復(fù)合物,而不是形成膠束。 這個(gè)數(shù)字隨著B(niǎo)SA濃度的增加而不斷增加,因?yàn)榕cBSA結(jié)合需要更多的分子。 BSA-[C10-4-C10im]Br2體系的表面張力值低于相應(yīng)的[C10-4-C10im]Br2體系,這是由于BSA-[C10-4-C10im]Br2絡(luò)合物具有較高的表面活性。[72]如果我們必須單獨(dú)分析每種情況,即在固定的BSA濃度下, 觀察到CMC值隨溫度升高而增加,這表明在CMC附近,[C10-4-C10im]Br2與BSA的結(jié)合取決于疏水相互作用。[65,73]
3.1. 界面參數(shù)
3.1.1. 最大表面過(guò)量濃度(Γmax)
Γmax說(shuō)明了表面活性劑分子在空氣-水界面上的累積,可以使用吉布吸附方程計(jì)算[73]
式中,γ是表面張力,Γmax是飽和吸附量(單位:mol/m2),n是[C10-4-C10im]Br2的每個(gè)分子的粒子數(shù),其值取3,因?yàn)樗嵌郾砻婊钚詣?,[74]R是氣體常數(shù)(8.314 Jmol-1K-1),T是絕對(duì)溫度(單位:開(kāi)爾文),C是表面活性劑濃度,以及 (δγ/δlogC)項(xiàng)表示預(yù)膠束區(qū)的γ-對(duì)數(shù)C曲線斜率。表1列出了所有系統(tǒng)中[C10-4-C10im]Br2的Γmax計(jì)算值。
表1.[C10-4-C10im]Br2在不同溫度下存在不同濃度BSA時(shí)的界面參數(shù)。
3.1.2.每個(gè)分子的最小面積(Amin)
空氣-水界面處的Amin可使用關(guān)系式[73]進(jìn)行計(jì)算
式中,NA為阿伏伽德羅數(shù)。表1總結(jié)了Amin值。結(jié)果表明,隨著溫度和BSA濃度的升高,Γmax減小,而Amin增大。然而,在存在20μM BSA的情況下,觀察到相反的趨勢(shì),這可能是由于與BSA形成兩種不同類(lèi)型的復(fù)合物 隨著溫度的升高,[C10-4-C10im]Br2主要通過(guò)靜電和疏水作用與BSA結(jié)合,從而增加了分子的寬度和面積,減少了分子的表面過(guò)剩量。[75]
3.1.3.CMC下的表面壓力(πCMC)
計(jì)算∏cmc是為了確定[C10-4-C10im]Br2在不同溫度和BSA濃度下的有效性,使用以下關(guān)系式。[76]它進(jìn)一步用于計(jì)算各種系統(tǒng)中[C10-4-C10im]Br2的熱力學(xué)參數(shù)。
式中,γo和γcmc是溶劑系統(tǒng)的表面張力和溶液在cmc值下的表面張力。如表1所示,[C10-4-C10im]Br2的∏cmc值隨BSA的溫度和濃度的增加而增加。這表明溫度和BSA都增加了[C10-4-C10im]的有效性 然而,如果我們單獨(dú)分析每種情況,[C10-4-C10im]Br2系統(tǒng)的有效性隨著溫度的升高而增加,而B(niǎo)SA-[C10-4-C10im]Br2系統(tǒng)的有效性隨著溫度的升高而降低。
表面自由能(Gmin)定義為自由能的變化,伴隨著溶液組分從本體相到表面相的轉(zhuǎn)變,并通過(guò)以下方程式計(jì)算。[77]
Gs min的值與形成的表面或表面活性的穩(wěn)定性成反比。在所有實(shí)驗(yàn)溫度下,所有系統(tǒng)獲得的Gmin值都較低(表1)。Gmin的較低值表明將形成熱力學(xué)上更穩(wěn)定的表面。這表明穩(wěn)定的表面形成和分子間的良好相互作用 [C10-4-C10im]Br2和BSA。[78]
3.2.熱力學(xué)參數(shù)
計(jì)算了在不同濃度和溫度下[C10-4-C10im]Br2在不存在和存在BSA的情況下的膠束化和吸附熱力學(xué)參數(shù),以確定溫度和BSA濃度的升高是否有利于膠束化(本體相濃度)或吸附 [C10-4-C10im]Br2的(界面濃度)。使用以下關(guān)系式計(jì)算各種熱力學(xué)參數(shù)。[79]
式中,XCMC是CMC的摩爾分?jǐn)?shù)單位值。 由此獲得的熱力學(xué)參數(shù)值如膠束化標(biāo)準(zhǔn)自由能(DG0m)和吸附標(biāo)準(zhǔn)自由能(DG0 ads)、膠束化焓(DH0m)和吸附焓(DH0 ads)以及膠束化熵(DS0m)和吸附熵(DS0 ads)如表2所示。 觀察到,與其他表面參數(shù)一樣; 熱力學(xué)參數(shù)也隨溫度和BSA濃度的變化而變化。 在我們的例子中,膠束化和吸附過(guò)程的DG0都是負(fù)值。 與膠束化相比,吸附自由能值隨溫度和BSA濃度的變化更大(圖3)。 觀察到DG0-ads比DG0-m更負(fù),并且這種負(fù)性隨著B(niǎo)SA濃度的增加而不斷增加,這表明[C10-4-C10im]的吸附 空氣/水界面上的Br2分子比其在體相中的膠束化更為突出,添加BSA通過(guò)與[C10-4-C10im]Br2形成一個(gè)在性質(zhì)上更具表面活性的絡(luò)合物來(lái)增強(qiáng)這種吸附過(guò)程(如我們之前的結(jié)果所述)。 此外,隨著溫度的升高,DG0 ads的負(fù)性增加超過(guò)DG0 m,這表明熱攪拌有利于吸附而不是膠束化。 這種效應(yīng)是由于高溫下疏水鏈的水化分解而產(chǎn)生的,而水化分解反過(guò)來(lái)會(huì)在[C10-4-C10im]Br2分子之間產(chǎn)生排斥作用。[80]
圖3. 在不同溫度下,DG0 m和DG0 ads隨BSA濃度的變化。
表2. [C10-4-C10im]Br2在不同溫度下吸附和膠束化的熱力學(xué)參數(shù)與BSA濃度的關(guān)系。
所有系統(tǒng)的膠束化焓均為負(fù)值,而[C10-4-C10im]Br2系統(tǒng)的吸附焓為正值,BSA-[C10-4-C10im]Br2系統(tǒng)的吸附焓為負(fù)值。 在所有情況下,膠束化焓和吸附焓均隨溫度的升高而降低。 這表明,膠束化過(guò)程在所有情況下均為放熱過(guò)程,而吸附過(guò)程僅在[C10-4-C10im]Br2系統(tǒng)中為吸熱過(guò)程,而在BSA-[C10-4-C10im]Br2系統(tǒng)中為放熱過(guò)程。 溫度對(duì)兩個(gè)過(guò)程的焓的影響相似。 膠束化和吸附的熵也以類(lèi)似的方式變化。 膠束化熵的正值對(duì)DG0 m的負(fù)值負(fù)責(zé),這表明膠束化過(guò)程在所有情況下都是熵驅(qū)動(dòng)的。 [C10-4-C10im]Br2系統(tǒng)的吸附熵正值和BSA-[C10-4-C10im]Br2系統(tǒng)的吸附熵負(fù)值表明,[C10-4-C10im]Br2系統(tǒng)的吸附過(guò)程是熵驅(qū)動(dòng)的,而B(niǎo)SA-[C10-4-C10im]Br2系統(tǒng)的吸附過(guò)程是焓驅(qū)動(dòng)的。
牛血清白蛋白對(duì)表面的影響離子液體型雙子表面活性劑的性質(zhì)——摘要、介紹
牛血清白蛋白對(duì)表面的影響離子液體型雙子表面活性劑的性質(zhì)——材料和方法
牛血清白蛋白對(duì)表面的影響離子液體型雙子表面活性劑的性質(zhì)——結(jié)果和討論
牛血清白蛋白對(duì)表面的影響離子液體型雙子表面活性劑的性質(zhì)——結(jié)論、致謝!