合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 物理高考考點:晶體、毛細(xì)現(xiàn)象、表面張力
> 干濕循環(huán)試驗:不同表面張力下土壤裂隙的發(fā)展演化機(jī)理(二)
> 表面張力測量儀的定義、分類及特點
> LB膜技術(shù)制備納米薄膜保護(hù)鋰電池極片的方法【發(fā)明方案】
> 表面活性劑對微納米氣泡曝氣中體積/液相傳質(zhì)系數(shù)、氧傳質(zhì)的影響
> 調(diào)控表面粗糙度,新生產(chǎn)的抗縮孔鍍錫板露天72h表面張力為31mN/m
> DHSO、AGE、TMHC構(gòu)建陽離子有機(jī)硅表面活性劑DAT防水鎖性能(二)
> 勝利油田常規(guī)和親油性石油磺酸鹽組成、色譜、質(zhì)譜、界面張力測定(二)
> 表面張力變化對含氣泡液體射流破裂的影響
> 槐糖脂屬于微生物源表面活性劑
推薦新聞Info
-
> 低總濃度下實現(xiàn)"超低界面張力"與"高黏彈性乳狀液"的雙重突破
> 巖液作用后海陸過渡相頁巖表面張力變化研究
> 低表面張力解堵液體系適用于海上低壓氣井水侵傷害治理
> 不同比例墨水配制對量子點薄膜形貌的影響
> 含氟聚氨酯超疏水涂層表面性能、化學(xué)穩(wěn)定性、耐摩擦性能研究——結(jié)果與討論、結(jié)論
> 含氟聚氨酯超疏水涂層表面性能、化學(xué)穩(wěn)定性、耐摩擦性能研究——摘要、實驗部分
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(三)
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(二)
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(一)
> 基于表面張力測定探究油酸乙酯對油酸鈉浮選石英的促進(jìn)作用機(jī)理
氣體富集、雜質(zhì)對固-液界面納米氣泡接觸角的影響——引言、實驗儀器與試劑
來源:黑龍江科技大學(xué)學(xué)報 瀏覽 841 次 發(fā)布時間:2024-11-28
為了研究納米氣泡接觸角小于其宏觀接觸角這一問題,通過分析醇-水替換前后在高序熱解石墨表面上測量得到的力-距離曲線,驗證界面氣體富集與納米氣泡共存的現(xiàn)象。結(jié)合Das提出的雜質(zhì)與接觸角的關(guān)系模型,討論雜質(zhì)對納米氣泡接觸角的影響。根據(jù)改進(jìn)的Young方程分析了線張力降低納米氣泡接觸角的機(jī)理。結(jié)果表明:納米氣泡接觸角受界面氣體富集、雜質(zhì)及線張力的影響,納米氣泡接觸角小于其宏觀接觸角是三者共同作用的結(jié)果。
納米氣泡是固-液界面上形成的直徑或高度為納米尺度的氣泡。近二十年來,納米氣泡引起越來越多學(xué)者的關(guān)注,已經(jīng)成為表面科學(xué)領(lǐng)域的研究熱點之一。納米氣泡的特征、形成方法、影響因素及潛在應(yīng)用等已經(jīng)被廣泛且較深入的研究。納米氣泡的穩(wěn)定性及導(dǎo)致其反常小的接觸角(氣相)的原因仍然是未解決的問題。為此,筆者對固-液界面納米氣泡的接觸角進(jìn)行研究。納米氣泡接觸角的影響分析。實驗研究發(fā)現(xiàn),納米氣泡的接觸角遠(yuǎn)小于其宏觀接觸角,文中納米氣泡的接觸角是指其氣相接觸角。如圖1所示,對于聚苯乙烯表面,宏觀液滴的液相接觸角約為95°,其氣相接觸角則約為75°,實驗中聚苯乙烯表面上納米氣泡的接觸角約為2.2°~31.0°,遠(yuǎn)遠(yuǎn)小于其宏觀接觸角。根據(jù)拉普拉斯公式,氣泡內(nèi)外的壓力差為
Δp=2ylg/Rc,
式中:ylg——氣-液界面的表面張力;
Rc——曲率半徑。
如果兩個氣泡的接觸線直徑相同,較小的氣相接觸角則意味著具有較大的曲率半徑,進(jìn)而較小的內(nèi)部壓力,具有較長的壽命??梢姡芯考{米氣泡這種‘反常小’的接觸角有助于納米氣泡獲得更長的壽命,即納米氣泡的小接觸角促進(jìn)了納米氣泡的穩(wěn)定性。此外,研究發(fā)現(xiàn),固-液界面上的氣體可以增大滑移長度,減小流體流動阻力,這已經(jīng)在最新研究中得到證明。研究還發(fā)現(xiàn),納米氣泡的形貌會影響減阻的效果,使納米氣泡不總是有利于流體流動。當(dāng)接觸角較大時甚至?xí)a(chǎn)生負(fù)滑移,即增大了流體流動阻力。因此,研究納米氣泡的接觸角也有助于深入研究納米氣泡與流體流動阻力的關(guān)系,促進(jìn)納米氣泡在滑移減阻方面的應(yīng)用。
納米氣泡接觸角小于其宏觀接觸角這個問題引起了許多學(xué)者的關(guān)注,Ducker在研究納米氣泡穩(wěn)定性時提出液體中的雜質(zhì)可能被吸附在納米氣泡表面上,使氣-液界面的表面張力降低,進(jìn)而降低納米氣泡的接觸角。Das建立了雜質(zhì)與納米氣泡接觸角的關(guān)系模型,分析并證實了Ducker的觀點,即納米氣泡氣-液界面上吸附雜質(zhì)后可以使納米氣泡的接觸角降低,但其仿真結(jié)果仍高于實驗中納米氣泡接觸角的測量值。納米氣泡是一種軟物質(zhì),AFM成像時探針-氣泡的相互作用會使納米氣泡高度的測量值小于其真實值,即利用AFM掃描圖像時,探針-氣泡的相互作用確實會影響納米氣泡的接觸角。那么,這是否是導(dǎo)致納米氣泡接觸角小于其宏觀接觸角的原因呢?近期,Peak-force AFM研究結(jié)果否定了這種猜測。文中從界面氣體富集(Interfacial gas enrichment,IGE)、雜質(zhì)及線張力這幾個因素對納米氣泡接觸角的影響進(jìn)行分析,探求納米氣泡接觸角“反常小”的原因。
圖1納米氣泡的氣相及其宏觀接觸角
1實驗儀器與試劑
1.1原子力顯微鏡
所采用的原子力顯微鏡(Atomic force microscopy,AFM)為NT-MDT公司的NTEGRA platform系統(tǒng)(NT-MDT Company,Zelenograd,Moscow)。探針為矩形探針(CSG30,NT-MDT Company),標(biāo)稱剛度,N/m探針針尖在使用前先后用乙醇、丙酮及超純水超聲清洗。在納米氣泡成像實驗中,采用的set-point值為95%,掃描頻率為1 Hz。實驗溫度為室溫25,實驗前擦拭液體槽、玻璃支架和彈簧夾等,然后依次用乙醇和超純水進(jìn)行沖洗。
1.2實驗試劑
水為超純水(18.2 MΩ·cm),通過Milli-QA10系統(tǒng)獲得。為了保證水中的氣體溶解度,實驗中的用水需要提前用潔凈的燒杯取超純水80 mL在空氣中平衡12 h,所用的乙醇也采用同樣的方法處理。實驗中用的丙酮和乙醇為優(yōu)級醇。